Do Tropical Nickel Hyperaccumulators Mobilize Metals into Epiphytes? A Test Using Bryophytes from New Caledonia
نویسندگان
چکیده
Hyperaccumulator plants mobilize large amounts of certain elements from the soil into their tissues. Those elements then may be transferred to other organisms in those communities. Using a humid tropical forest site in New Caledonia, we tested whether epiphytes (mosses and liverworts) growing on Ni hyperaccumulator hosts contained greater levels of Ni (and seven other metals) than those growing on non-hyperaccumulator hosts. We selected two Ni hyperaccumulator species, Psychotria douarrei and Hybanthus austrocaledonicus, pairing individuals of each species with similar-sized non-hyperaccumulators and collecting epiphytes from each for elemental analysis. Samples of epiphytes and host plant leaves were analyzed for concentrations of eight metals (Co, Cr, Fe, Mg, Mn, Ni, Pb, and Zn). Two-way ANOVA was used to assess the infl uence of host type (hyperaccumulator or non-hyperaccumulator), epiphyte group, and the interaction term. Leaves of both Ni hyperaccumulator species had greater Ni concentrations than the paired nonhyperaccumulator species, but leaf concentrations of other metals (Co, Cr, Fe, Pb, and Zn) were higher as well in one or both cases. The strongest infl uence on epiphyte elemental composition was found to be the host type factor for Ni. Epiphytes collected from hyperaccumulator hosts had signifi cantly greater Ni concentrations than those collected from non-hyperaccumulator hosts. Epiphyte Ni concentrations often exceeded the threshold used to defi ne Ni hyperaccumulation (1000 μg/g), showing that some epiphytes (in most cases those growing on Ni hyperaccumulators) also hyperaccumulate Ni. Six of the epiphytes we analyzed, four liverworts (Frullania ramuligera, Schistochila sp., Morphotype #1 and Morphotype #13) and two mosses (Calyptothecium sp. and Aerobryopsis wallichii), had at least one specimen containing more than 1000 μg Ni/g and hence qualify as Ni hyperaccumulators. We conclude that Ni could move from Ni hyperaccumulator hosts to their epiphytes, either from leachates/exudates from tissues or from accumulated external dust, thus potentially mobilizing Ni still further into the food webs of these humid tropical forests.
منابع مشابه
The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants
While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Amo...
متن کاملNickel uptake by Flacourtiaceae of New Caledonia.
Herbarium and field specimens (over 300) of all of the Flacourtiaceae of New Caledonia were analysed for nickel in order to identify hyperaccumulators (greater than 1000 microgram/g dry mass) and to assess nickel accumulation in relation to the evolutionary status of 'nickel plants' of New Caledonia. One hyperaccumulator was identified in the genus Lasiochlamys, ten among Xylosoma, one among Ca...
متن کاملMetal concentrations of insects associated with the South African Ni hyperaccumulator Berkheya coddii (Asteraceae)
The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body metal concentrations (Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn). We also documented the concentrations of these metals in leaves, stems and inflorescences, finding extremely elevated levels ...
متن کاملTrends in concentrations of selected metalloid and metals in two bivalves from the coral reefs in the SW lagoon of New Caledonia.
The concentrations of nine elements (Ag, As, Cd, Co, Cr, Cu, Mn, Ni and Zn) were measured in the oyster Isognomon isognomon and the edible clam Gafrarium tumidum from different sites along the SW New Caledonian coast which is subjected to important chemical inputs due to intense land-based mining activities (New Caledonia is the third world producer of nickel). Results indicate that concentrati...
متن کاملElemental Concentrations of Eleven New Caledonian Plant Species from Serpentine Soils: Elemental Correlations and Leaf-age Effects
We investigated accumulation of elements (Ca, Co, Cr, Cu, Fe, K, Mg, Mn, P, Pb, and Zn) in leaves of different ages for 11 evergreen woody plant species from serpentine soils of New Caledonia. Species were classifi ed into four categories of Ni accumulation ability: one species was a non-accumulator (<100 mg Ni/ kg), three were accumulators (100–1000 mg Ni/kg), two were hyperaccumulators (1000–...
متن کامل